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EXECUTIVE SUMMARY

One of the important issues in the design of a lunar base is the thermal control

system (TCS) used to reject low-temperature heat from the base. The TCS ensures that

the base and the components inside are maintained within an acceptable temperature

range. The temperature of the lunar surface peaks at 400 K during the 336-hour lunar

day. Under these circumstances, direct dissipation of waste heat from the lunar base

using passive radiators would be impractical. Thermal control systems based on

thermal storage, shaded radiators, and heat pumps have been proposed. Based on

proven technology, innovation, realistic complexity, reliability, and near-term

applicability, a heat pump-based TCS was selected as a candidate for early missions.

In this report, Rankine-cycle heat pumps and absorption heat pumps (ammonia-

water and lithium bromide-water) have been analyzed and optimized for a lunar base

cooling load of 100 kW. For the Rankine cycle, a search of several commonly used

commercial refrigerants provided Rll and R717 as possible working fluids. Hence, the

Rankine--cycle analysis has been performed for both Rll _ and R717. Two different

configurations were considered for the system--one in which the heat pump is directly

connected to the rejection loop and another in which a heat exchanger connects the

heat pump to the rejection loop. For a marginal increase in mass, the decoupling of

the rejection loop and the radiator from the heat pump provides greater reliability of

the system and better control. Hence, the decoupled system is the configuration of

choice. The optimal TCS mass for a 100 kW cooling load at 270 K was 5940 kg at a

radiator temperature of 362 K. Rll was the working fluid in the heat pump, and R717

was the transport fluid in the rejection loop.

Two TCSs based on an absorption-cycle heat pump were considered, one with an

ammonia-water mixture and the other with a lithium bromide-water mixture as the

working fluid. A complete cycle analysis was performed for these systems. The

system components were approximated .as heat exchangers with no internal pressure

-ii-



t i

w

i

drop for the mass estimate. This simple approach underpredicts the mass of the

systems, but is a good "optimistic" first approximation to the TCS mass in the absence

of reliable component mass data. The mass estimates of the two systems reveal that, in

spite of this optimistic estimate, the absorption heat pumps are not competitive with the

Rankine.-cycle heat pumps.

Future work at the systems level will involve similar analyses for the Brayton- and

Stirling-cycle heat pumps. The analyses will also consider the operation of the pump

under partial-load conditions. On the component level, a capillary evaporator will be

designed, built, and tested in order to investigate its suitability in lunar base TCS and

microgravity two-phase applications.
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CHAPTER 1. INTRODUCTION

One of the important issues in the architecture of a lunar base is the design of a

thermal control system (TCS) to reject the low-temperature heat from the base. The

TCS ensures that the base and all the components inside are maintained within the

operating temperature range. The temperatures of the lunar surface peak to about

400 K during the 336-hour lunar day, and the issue of low-temperature (less than 400 K)

heat rejection from the base under such conditions is a technically challenging one.

Prior studies have shown that the overall mass of a TCS and its power supply under

such circumstances can be significant [1-3].

The single largest fraction of the overall cost for any space mission is associated

with the initial launch, which continues to be in the vicinity of $6,000-$12,000/kg from

Earth to LEO. The reduction of lift mass at launch is a key design driver in space

mission planning. In attempts to find the lowest mass for the TCS, several options have

been proposed. One option would be to store the waste heat deep in the lunar regolith

[1], which would require a piping system, working as a heat exchanger, to be buried in

the soil. The technical difficulties and uncertainties associated with large-scale

excavation on the Moon, and a lack of knowledge about the thermal properties of lunar

regolith, are primary reasons for not pursuing this path at this juncture. However, this

option holds promise for the future.

A significant portion of the total mass of the TCS is due to the radiator. Shading

the radiator from the Sun and the hot lunar soil could significantly decrease the

radiator's sink temperature and, hence, its mass. Therefore, the concept of shaded

lightweight radiators has been proposed. This technology requires the shades to be

built of specular surfaces. The degradation rate of radiator properties in a lunar

environment is not known. At least for the initial cases, the prudent approach would be

to employ systems that rely on proven technology. The concept of using a heat pump

fits this bill. In this concept, energy in the form of heat, or work, is supplied to the

-1-
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heat pump, which collects heat from the low-temperature source (the lunar base) and

delivers it at a higher temperature to the radiator. The mass of a radiator dissipating

high-temperature heat would be significantly lower than one operating without a

temperature lift. A simplified block diagram of this concept is illustrated in Figure 1.
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Figure 1. Schematic of a thermal control system (TCS) using a heat pump.

Heat pumps have been in use for terrestrial applications for a long time.

Refrigeration devices utilizing a thermodynamic cycle are essentially heat pumps. A

vapor compression cycle (involving two constant- pressure and two adiabatic

processes) is the most widely used. It is also called a Rankine cycle and requires

shaft work. Absorption cycles, on the other hand, are heat driven and do not require

high-quality shaft work. The Stirling cycle, consisting of two isothermal and two

constant-volume processes, promises a better efficiency than the Rankine cycle.

Theoretically, it reaches the same efficiency as the optimal Carnot cycle, but the

processes are technically difficult to realize. Today, Stirling--cycle coolers are used in

cryogenic applications. Experiments using this cycle for residential heat pumps show

promising results [4, 5], but these heat pumps are in their infancy in terms of their

technology readiness levels.

In order to optimize the mass of the heat-pump-augmented TCS, all promising

options have to be evaluated and compared. During these preliminary comparison

studies, considerable care has to be given to optimizing system operating parameters,

N
_J



w

-3-

working fluids, and component masses. However, in order to keep this preliminary

study simple and concise, some issues are not being considered at this time: (1) While

evaluating system mass, the control components are not accounted for since the

difference in the masses for the various cycles and working fluids would not be large.

(2) The systems are modeled for full-10ad operation, and the implications and power

penalties at off-design and partial-load conditions are not considered. However, it is

realized that the surface temperature of the lunar regolith varies considerably during

the lunar day, as shown in Figure 2. This variation in the regolith temperature indicates

that the temperature lift and the load of the heat pump vary as a function of the time of

day. For this reason, the performance of the heat pump at partial-load conditions is

important and will be studied in detail in the future. (3) Redundancy requirements are

not considered. Issues such as these will be studied in detail during the design of the

actual system.. The Rankine-cycle heat pump is the first option to be studied. The

details are presented in Chapter 2. Following this, the absorption cycle using both

ammonia-water and lithium bromide-water mixtures are analyzed. The absorption cycle

is discussed in detail in Chapter 3.
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CHAPTER 2. A THERMAL CONTROL SYSTEM BASED ON

A RANKINE-CYCLE HEAT PUMP

A detailed cycle and mass analysis of a Rankine-cycle heat pump is presented in

Section 2.3. Sections 2.1 and 2.2 describe the cooling load requirements for the lunar

base and the design of the acquisition loop, respectively. Section 2.4 considers the

mass model used for the radiator, and the mass model of the power supply is dis-

cussed in Section 2.5. The results of the mass optimization are presented in Section 2.6.
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2.1 Cooling Load

In order to estimate the cooling load, a closed-system analysis was performed on

a lunar base. Energies crossing the boundaries are electrical power supply, conduction

through walls, and heat removed by the acquisition loop of the TCS. Internally, heat

generation can occur due to human metabolic activity. The electrical power input for a

first-stage base is estimated to be between 50 and 100 kW, more likely 100 kW [1,

6-8]. Conduction through the walls depends on the insulation, and it is possible to

reduce heat gains or losses to a very small fraction of the electrical input without

significant mass penalties. Hence, they are neglected. Based on food consumption, a

crew member produces an average of about 150 W. For a crew of 6 to 8 members, the

total heat generation would again be negligible, compared to the electrical input.

Therefore, the cooling load (the heat removed by the acquisition loop) can be equated

to the electrical input to the base. Stated differently, this implies that all electrical

input will finally be dissipated as heat. The value for the cooling load is fixed at 100

kW for this study. When further details about the design and activities of the base are

known, these assumptions can be revisited and refined if necessary.

2.2 The Acquiaitic_n Loop

The acquisition loop collects the excess heat from the lunar base and transports it

to the heat pump. It consists of cold plates and a network of connecting pipes. The

-4-
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heat is transported by a single-phase fluid. Since the coolant in the acquisition loop

circulates in the habitation module, nontoxicity is a necessity for safety considerations.

Water, with certain trace additives to depress its freezing point, would be a good

candidate. For this study, it was decided that one cooling loop operating at a single

pre--designed temperature would be used. This temperature was chosen to be 275 K

(the lower of the two Space Station cooling-loop temperatures). The variation in the

temperature of the coolant has to be small enough to provide isothermal cooling for

small variations in the load, yet large enough to keep the coolant flow rate within

reasonable limits. The mass flow rate in the acquisition loop is rh - (_cool/(cp_T). If

water with trace additives were used as the coolant, the temperature variation in the

acquisition loop taken to be 5 K, and the water temperature to be 275 K, then the mass

flow rate in the acquisition loop would be 4.8 kg/s.

2.3 The Heat Pump

Two different heat pump configurations were investigated. In the first

configuration, Case A, the heat pump is directly connected to the rejection loop. In

this case, the condenser of the heat pump and the radiator are one and the same. The

refrigerant circulating in the heat pump condenses and rejects heat through the radiator.

In the alternative configuration, Case B, the heat pump and the rejection loop are

decoupled with a heat exchanger. Here, the heat exchanger is the condenser for the

heat pump and a rejection loop transports the heat of condensation to the radiator for

dissipation. Both the cases will be analyzed in detail in the following sections of this

chapter, and their pros and cons will be discussed.

2.3.1 Heat Pump Coupled Directly to the Rejection Loop (Case A)

A simplified schematic of a heat pump directly connected to the rejection loop is

illustrated in Figure 3. The main parameters of interest in the design of a heat pump

used for cooling are the input heat flux ((_cool) and its temperature (Tcool), the
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Figure 3. Schematic of a heat pump directly connected to the rejection loop.

temperature lift, and the coefficient of performance. The COP of a heat pump is

defined as

COP- _J',
We

where We is the power consumed by the heat pump.

The Compressor.--Figure 4 illustrates the Rankine-cycle on a p-h diagram. The

working fluid in the vapor state is compressed from Pl to P2. Ideally, this process

would be isentropic (1-2s). Due to irreversibilities, the process is nonisentropic,

We, idea I - h2a - h I

We, real " h2 - hl

h2s - h1
T/compressor- h2 - hI '

where h is the specific enthaipy and the subscripts refer to the states in Figure 4.

In order to limit the number of free parameters, it is assumed that the compression

would be performed in a single stage. Customarily, airplane cooling systems utilize
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Figure 4. Rankine cycle for R717 plotted on a p-h diagram.

multistage compression [9], but there is no intercooling between the stages. Hence,

effectively, the compression can be modeled to be single stage. The properties of the

refrigerant used for the calculations were obtained from Reynolds [10] and a

FORTRAN77 code was developed in-house [11]. Deviations from the ideal behavior in

the compression occur due to mechanical, electrical (motor), and electronic (controller)

inefficiencies and fluid friction. The values for the inefficiencies in state-of-the-art

aircraft cooling equipment were obtained from R. Murray (AiResearch, Los Angeles,

California, private communication, 1991) and are as follows: r/math '= 0.95, /Telectrical ==

0.94, r/ek_ctroni¢= 0.91, and r/fluid == 0.75. The excess energy supplied to overcome these

inefficiencies will be converted to heat. Since the compressor would operate in a

high-vacuum environment, radiation to the environment and convection of the heat by

the vapor flow inside are the only heat rejection mechanisms. The contribution due to

heat radiation can be shown to be negligible by modeling the compressor as a black

cube, 0.25 m per side, at 400 K. Therefore, it can be assumed that all the energy

supplied to the compressor will be used to compress and heat the refrigerant. "r:he

overall efficiency of the compressor is the product of all four efficiencies (61%). It
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should be noted that the temperature of the compressor can be maintained within

operating limits by use of a cold plate. This is not required, however, because the

working fluid can convectively remove the excess heat from the compressor.

The next step is a mass estimate for the compressor. [n aircraft cooling, the

compressor mass is assumed to be proportional to the cooling load. One pound (0.454

kg) per kilowatt is the value suggested (R. Murray, AiResearch). In our analysis, the

cooling load of the lunar base is kept a constant. The heat pump output temperature,

and hence the total heat rejected by the heat pump, is varied. Since the assumption of

compressor mass being proportional to the cooling load would lead to an unrealistic

constant mass estimate in our case, it was modified as follows: A proportionality was

assumed between compressor mass and the heat pump output, which is the sum of the

input heat and compressor power. The proportionality constant was arrived at as

follows: The reference temperatures to obtain the proportionality factor, Thig h .,,, 380 K

and Tiow = 275 K, are values typical for an aircraft cooling system. For these

temperatures and R7!7 as the refrigerant, the heat pump overall COP is 0.805. With

this value,

- [ oo,
mc°r_ " (_reioct coP 1 oo,(COP.1)

- 0.202 kg/kW,

----_ :

qm,,,

where mcomp is the compressor mass in kilograms per kilowatt of rejected heat, Mcomp

is the actual compressor mass in kilograms, and mc0r_o is the compressor mass in

kilograms per kilowatt of cooling load.

Discharge and Return Lines To and From the Radiator.--At point 2 in Figure 4,

the refrigerant is in the superheated state. The length of the discharge line depends on

the layout of the lunar base and how the radiators are configured spatially. The

discharge line has to connect all the radiators to the compressor. Figure 5

schematically depicts the setup of the radiators and the piping. Assuming the radiators
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Radiator
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Figure 5. Schematic of radiators and rejection loop piping.

are of constant height, it is reasonable to take the pipe length to be proportional to the

radiator area, i.e., L = S + A/H, where L is the length that will be used to determine the

pressure drop, A is the radiator area, H is the "equivalent height" of the radiator, and S

is the distance from the lunar base to the radiator array. (The equivalent height" is not

the same as the actual height because it accounts for bends in the piping and/or a

spacing between the radiators.) The complete rejection loop length is 2 L. The

pressure drop in the piping is a function of the pipe diameter and is determined based

on recommendations for good design practice [12]. The pressure drop in the

discharge line, the radiator (condenser), and the return line is taken to be the

equivalent of a 1 K temperature drop. It is important for the thermodynamic model that

this pressure drop be small enough that it does not affect the overall efficiency. Fixing

the total pressure drop allows the designer to decouple the pipe sizing from the

thermodynamic evaluation of the heat pump. The pressure drop is split, such that one-

half of it occurs in the condenser and the rest is in the discharge and return lines. The
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friction losses in discharge and return lines are determined based on the optimization

of the pipe masses. The frictional pressure drop, (Ap)f ,ftv2/2pd, where the friction

factor for smooth pipes is f - [2 Iog10(2.51/Re'vr()] -z, d is the pipe diameter, t is the

length of the pipe, v is the fluid velocity, p is the fluid density, and Re is the pipe

Reynolds number. The total mass is the sum of the mass of the pipe and the mass of

the fluid in the pipe. The tube thickness is computed based on a factor of safety of

three. A minimum thickness of 0.5 mm is also required. The density of the piping

material is based on a light-weight, high-strength aluminum alloy. Should such an alloy

be chemically incompatible with the refrigerant of choice, the inside of the pipes can

be coated to take care of the problem. The masses are

_'d2 "fPDioeP

Mpipe - 20.y,pipe

lrd 2 tpfluid
Mfluid " 4 '

w

¢=,,,..

where O'y, pip e iS the allowable (design) stress for the pipe material.

Between points 2 and 3, the superheated vapor is cooled in the radiator. Ideally,

this process can be modeled as an isobaric process, but due to pipe friction and heat

losses, a small pressure drop would occur. Between points 3 and 4, the refrigerant is

condensed to saturated liquid. A finite pressure drop occurs in the condenser. The

mass estimate for the condenser will be discussed in the radiator section (§2.4). The

heat to be rejected by the radiator is (_re_t " h2 - h4" From point 4, the saturated

liquid is sent from the radiator to the throttle valve located at the evaporator inlet,

through the return line. The sizing of the return line is based on the same guidelines

described for the discharge line.

Evaporator and Throttle Valve.--Between points 4 and 5, the fluid is adiabatically

throttled. The mass of the throttle valve is negligible compared to the mass of the

other components of the heat pump. Between points 5 and 1, the refrigerant absorbs

w
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heat from the primary coolant circulating in the lunar base. The heat removed is (_cool

= h1 - h5. The mass of the evaporator is obtained based on a suggested value of

2.72 kg/kW [13].

Refrigerant.---One of the important issues is the choice of refrigerant to use as the

working medium for the Rankine cycle. The refrigerants that are commonly used in

terrestrial and aerospace applications, Rll, R12, Rl13, Rl14, and R717, were

considered [9]. Rl13 and Rl14 were eliminated from the list of potential refrigerants

because of the possibility of condensation of the vapor in the compressor (Figure 6).

Such condensation would be detrimental to the life of the compressor. The selection

was then narrowed to Rll and R717, because R12 has a lower COP and a lower critical

temperature (R717: Tcrit == 407 K; Rl1: Tcrit ,= 474 k; R12 : Tcrit ,= 385 K). The p-h

diagrams for R717 and Rll are shown in Figures 4 and 7, respectively. Safety

considerations give an edge to R1.1 because of its nontoxicity and noninflammability,

but R717 offers better heat transport properties. The thermodynamic properties of the

refrigerants were obtained using the analytical functions suggested by Reynolds [10].

The COP can be expressed in terms of the specific enthalpies as

COP -
h2 - h1 •

The overall COP was computed as a function of the condenser temperature and is

plotted in Figure 8. Table 1 lists the COP calculations for a condenser temperature of

380 K.

Implementation of Heat Pump and Piping Model.--Values for COP and the mass

of the piping were computed and tabulated for varying rejection temperatures using the

models discussed above. These tabulated values were imported to a spreadsheet and

linearly interpolated where necessary.
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Table 1. Properties of R717 and Rll in the Rankine cycle

for Thigh - 380 K.

T. P h s p
State [K] [iPa] [kJ/kg] [kJ/kg] . [kg/rn 3 ]

R717: COP = 0.829

1
2
3
4
5

270 0.381
626 7.270
380 7.140
380 7.140
270 0.381

1584 6.046
2419 6.615
1541 4.788
893 3.080
893 3.483

Rl1: COP ,,, 0.914

3.088
24.890
67.200

436.500
6.725

1
2
3
4
5

270
448
380
380
270

0.035
0.964
0.945
0.945
0.035

249
350
301
158
158

0.9581
1.0510
0.9343
0.5565
0.6180

2.18
39.20
49.70

1255.00
4.22

rz=_
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2.3.2 Heat Pump Decoupled from Rejection Loop by Heat Exchanger (Case B)

Connecting the heat pump directly to the radiator has inherent disadvantages. If

the refrigerant used in the Rankine, cycle is not the best one for a heat transport loop,

it would be advantageous to separate the rejection loop from lhe heat pump using a

heat exchanger. This configuration, a heat pump-augmented TCS, is shown in Figure 9.

From a system-design perspective, it is desirable to decouple subsystems that carry out

different tasks. The decoupled case would provide for better and simpler control of

the TCS during partial-load conditions. On the other hand, a heat exchanger between

the two loops would cause a temperature drop between the heat pump and the

rejection loop and an associated mass penalty. To compensate for the temperature

drop, the heat pump has to deliver the output heat at a higher temperature and

therefore operate at a lower COP. If the same fluid were used in the Rankine cycle

and in the rejection loop, the only foreseeable advantage of the decoupled system

would be the possibility of better and simpler control. However, other advantages-

could emerge if two different fluids were used. Many heat pumps operating in parallel

could share the same decoupled rejection loop. Also, a meteorite hit of the rejection

loop piping would not put the heat pump out of commission.

J

z

=
E

Acquisition

Loop

Q cooi@Tcool

Figure 9.

Heat Pump

5

Heat

Exchanger

' 1

Throttle 1

Heat [

Exchanger __

r

Pump
1

tt Radiator

W

Q reject@Treject

Schematic of a heat pump decoupled from the rejection loop.
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The thermodynamic and mass models for the heat pump with an output heat

exchanger (Case B) differ only in a few aspects from the models presented for Case A

(_2.3.1). Only these differences will be discussed here.

Condenaer.--In Case B, the condenser is a heat exchanger that decouples the

rejection loop from the heat pump. Both fluids undergo phase changes in this heat

exchanger. For a mass estimate, the value quoted by Swanson et al. [1], 2.72 kg/kW,

was used. The thermodynamic performance of the condenser is characterized by a

pressure drop in each loop (heat pump and rejection loop) and a temperature

difference between both sides. The temperature difference is set to 5 K, the same as

for the acquisition side. Consistent with Case A, the pressure drop has to be small

enough so as not to affect the heat pump's performance. A pressure drop equivalent to

a 1 K temperature drop has been assigned to the condenser.

Rankine--Cycle Analyaia.--The cycle evaluation follows the same path outlined for

Case A. The efficiencies and pressure drops of the heat pump components are also

the same as in Case A. The COP as a function of the output temperature, Thig h, was

computed with a FORTRAN77 program using the fluid properties given by Reynolds

[10]. The implementation of this COP(T) in the spreadsheet was realized with an

approximate analytical function. For each refrigerant, a fourth-order polynomial was

fitted to the data computed with the FORTRAN77 code. The resulting approximation

yields an error of less than 0.3 percent for output temperatures from Thigh - 320 K to

Thigh = 390 K. Figure 10 shows a comparison between the real fluid model and the

polynomial approximation, and Figure 11 presents the corresponding error analysis. It

can be seen that the results are almost identical.
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Rejection Loop.--The decoupled rejection loop would require a pump to circulate

the cooJant fluid. This pump and the power penalty associated with it have to be

incorporated into the mass estimate and optimization. The pump mass is estimated

using a formula quoted by Dexter and Haskin [2],
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M0=.. 61i 1°'5
where rh is the mass flow rate in pounds per hour and p is the density of the fluid in

The power required for a liquid pump can be readilypounds per cubic foot.

computed from

_P_/
Wpump =.

r/pump

where Ap is the pressure differential across the pump, _/ is the volume flow rate, and

r/pump is the pump efficiency. A conservative value, r/pump = 0.25, as suggested by

Dexter and Haskin [2] was used. The pressure drop was determined with the formulas

presented for Case A. The pipe thickness is again determined based on the hoop

stress or 0.5 mm, whichever is larger. Masses included in the estimate are due to

pipes, coolant, pump, and the power supply. The decoupled rejection loop does not

affect the heat pump COP. The minimum mass for the loop may be achieved by

balancing pipe mass and the power penalty. This approach results in optimum mass

when the pipe diameters are relatively small and the pressure drop is large. However,

a large pressure drop in the vapor line would result in a large temperature drop, and

this is accompanied by an increase in the radiator area and mass. While the pressure

drop in the liquid line can be compensated for by the pump, if the pressure drop gets

large, the pumping power will become significant and add to the total heat rejection

load. Therefore, the mess estimate for the piping has to be computed based on a

limited pressure drop. Here, again, the pressure drop is specified in terms of an

equivalent temperature drop and is set to 0.5 K in the vapor and 1.0 K in the liquid

line. These values are chosen based on recommended design practice [12]. The

cooling fluid of choice is ammonia, which has already demonstrated its good

performance as a heat transport fluid in Case A. The toxicity of ammonia will not be a

concern in the rejection loop because it is outside the habitation modules.

w
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Xn Case A, the piping mass was determined with the heat pump estimate because

they are coupled. Assuming values for the radiator height and distance from the base,

Case A yielded a model where the piping mass depends solely on the rejection

temperature. For Case B, a model that makes use of the decoupling of heat pump

characteristics and the rejection loop was sought. For a given refrigerant and specified

pressure drops in the liquid and vapor lines, the rejection loop mass depends on three

parameters: rejection heat load, Qrejlct; rejection temperature, Treject; and pipe length,

I_reject. Using the thermodynamic properties from Reynolds [10], the mass model was

implemented in a FORTRAN77 code. Figures 12 and 13 show results obtained with the

code. For use with a spreadsheet, it is desirable to obtain an analytical expression for

the mass. This was realized with a polynomial that is second order in temperature,

second order in height, and linear in rejection heat load:

2 2 1

Mpiping. _--_. _"_ _---_ aij_T' LJQk.

i-0 j=0 k,-O

The coefficients were determined with a least square error fit. The approximation is

valid in the following range: 340 K _ Treject <: 380 K, 150 kW _ Qreject <: 250 kW, and

100 m < Lrej_ct < 400 m. The maximum error of the approximation is 3 percent.

r .

r_

w

2.4 Radiator Considerations

The function of the radiator is to reject the waste heat from the base. The heat

rejected by the radiator is given by (_ = A_r_'(T_reje¢t - Tsink), where _ is the emissivity, r/

is the fin efficiency, and Treject and T=ink are the radiator and sink temperature,

respectively. The estimated sink temperature for a vertically mounted radiator at the

lunar base is 321 K [6]. Most reviewed sources suggest _ = 0.8 and r/ - 0.7. Several

estimates for the mass of a radiator are available in the literature [1-3, 6, 14-16]. The

mass of a radiator is taken to be proportional to its area, and recent publications
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recommend a value of 5 kg/m 2 for a one-sided radiator. The vertical radiator is two

sided and hence a mass estimate of 2.5 kg/m 2 is assumed. Other values of specific

mass of the radiator can be incorporated in the spreadsheet without difficulty. The

heat to be rejected is the cooling load of the base plus the power consumed to operate

the heat pump.

2.5 Power Supply

The heat pump consumes power in order to achieve the desired temperature lift.

The capacity of the lunar base power station needs to be increased in order to account

for this additional power consumption. It is reasonable to assume that the additional

mass penalty would be proportional to the power supplied to the heat pump. A review

of the literature shows that there is no consensus on the mass penalty [1-3, 6, 7, 17].

The values quoted lately are in the neighborhood of 30 kg/kW for photovoltaic or

nuclear units. This value will be used in our studies. It is, however, possible to

substitute other values for the specific mass in the spreadsheet and perform the

analysis without difficulty.

=

w

2.6 Results

The overall mass optimization was performed using a spreadsheet. The heat pump

output temperature lift, and hence the radiator temperature, was varied, and the

variations of the masses of the components and the TCS were computed using the mass

models described in this report. For the coupled TCS configuration, Case A, the

analyses were performed for two working fluids, Rll and R717. The overall TCS mass

variation as a function of radiator temperature is shown in Figure 14(a). Similar

analyses were performed for the decoupled configuration, Case B [Figure 14(b)]. For

Case B, Rll and R717 were used as the working fluids for the heat pump, but R717

was used in the rejection loop due to its superior heat transport characteristics.
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Figure 14. Overall TCS mass as a function of Treject.

When Rll is used as the working fluid for the heat pump, the optimal TCS mass is

6108 kg at a radiator temperature of 371 K for the coupled situation, Case A. For Case

B, the optimal TCS mass is 5940 kg at aradiator temperature of 362 K. The radiator

mass in E_ase B is higher than in Case A because of its lower operating temperature.

Also, the presence of the heat exchanger between the heat pump and the rejection loop

adds extra mass to the Case B scenario, in spite of these mass penalties, the optimal

TCS system mass for Case B is lower than that forCase A. This is due to the large

reduction in the rejection loop piping mass for Case B. When R717 is used as the

working fluid in the heat pump, the optimal mass of the TCS is 5515 kg at a radiation

temperature of 362 K for Case A. For Case B, the corresponding values are 6392 kg

and 360 K, respectively. It is obvious that Case B is more massive than Case A, since

the radiator temperature for Case B is lower and it also has an additional heat

exchanger. The masses of the individual components for Cases A and B are shown

graphically in Figures 15 and 16 for a range of radiator temperatures and are listed

Tables 2-7.

Among the cases considered, the R717 coupled TCS configuration offers the least

mass, 5515 kg. The best decoupled configuration would involve Rll as the working

fluid for the heat pump and R717 as the working fluid for the rejection loop. The
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Table 3. Optimum component and TCS masses for Case A
with R717.

Acquisition Loop
Cooling load Qcoo= 100 kW
Cooling temperature Tcool 275 K

Heat Pump
Temperature drop, HXin
Input temperature
Output temperature
Heat pump efficiency
Compressor power
Rejection heat load
Evaporator specific mass
Compressor specific mass
Evaporator mass
Compressor mass
Heat pump mass

5
_THXin 270
_low

Thig h 362
COP 1.11
W 90.2

Qre_t 190.2
mavap 2.72
mcomp 0.202
Mevap 272
Mcomp 18.2
MHp 290

K
K
K

kW
kW

kg/kW
kg/kW
kg
kg
kg

Power Supply
Specific mass mpow=r
Power penalty Mpow=r

30 kg/kW
2707 kg

Rejection Loop
Pipe mass Mpipe 278 kg

Radiator

Rejection temperature Treject 362
Sink temperature Ts_r_ 320
Fin efficiency _ 0.7
Emissivity _ 0.8
Radiator area A 895.9

Radiator specific mass mrad 2.5
Radiator mass Mrad 2240

K
K

m 2

kg/m 2
kg

System Mass MTCs 5515 kg
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Table 5.',, Optimum component and TCS masses for Case A
with Rll.

Acquisition Loop
Cooling load Q¢ool 100 kW
Cooling temperature Tcool 275 K

Heat Pump
Temperature drop, HXin
Input temperature
Output temperature
Heat pump efficiency
Compressor power
Rejection heat load
Evaporator specific mass
Compressor specific mass
Evaporator mass
Compressor mass
Heat pump mass

5 K
TZ_THXin 270 K
_low

Thigh 371 K
COP 1.06
W 94.5 kW

Qreject 194.5 kW
mevap 2.72 kg/kW
mc0mp 0.202 kg/kW
Mevap 272 kg
Mcomp 19.1 kg
MHp 291 kg

Power Supply
Specific mass mpower 30 kg/kW
Power penalty Mpower 2836 kg

Rejection Loop
Pipe mass Mpipe 1171 kg

Radiator

Rejection temperature Treject 371
Sink temperature Tsink 320
Fin efficiency I/ 0.7
Emissivity _ 0.8
Radiator area A - 724.2

Radiator specific mass mrad 2.5
Radiator mass Mrad 1810

K
K

m 2

kg/m 2
kg

System Mass MTCs 6108 kg

Ill
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Table 6. Optimum component and TCS masses for Case B
with R717.

Acquisition Loop
Cooling load Qcoo_ 100 kW
Cooling temperature T¢ool 275 K

Heat Pump
Temperature drop, HXin ATHx.

AT inTemperature drop, HXout _ HXou t

Input temperature TIow
Output temperature Thigh
Heat pump efficiency COP
Compressor power W
Rejection heat load Qr,ject
Evaporator specific mass mevap
Condenser/HX specific mass mcond
Compressor specific mass mcomp
Evaporator mass Mevap
Condenser/HX mass Mcond
Compressor mass Mcomp
Heat pump mass MHp

5 K
5 K

270 K
365 K
1.06
94.0 kW

194.0 kW
2.72 kg/kW
2.72 kg/kW

0.202 kg/kW
272 kg

527.8 kg
19.0 kg
819 kg

Power Supply

Specific mass mpower
Power penalty Mpower

30 kg/kW
2821 kg

Rejection Loop
Liquid pipe mass Mtiquid 213.3 kg
Vapor pipe mass Mvapor 117.5 kg
Pipe mass Mpipe 331 kg

Radiator

Rejection temperature Treject 360
Sink temperature Tsink 320
Fin efficiency 1/ 0.7
Emissivity _ 0.8
Radiator area A 968.5

Radiator specific mass mrad 2.5
Radiator mass Mra d 2421

K
K

m 2

kg/m 2
kg

System Mass MTCs 6392 kg
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Table 7. Optimum component and TCS masses for Case B
with R11.

Acquisition Loop
Cooling load Qcool 100 kW
Cooling temperature Tcool 275 K

Heat Pump
Temperature drop, HXin ATHXin 5 K
Temperature drop, HXout ATHXout 5 K
Input temperature TIow 270 K
Output temperature Thigh 367 K
Heat pump efficiency COP 1.14
Compressor power W 87.7 kW
Rejection heat load Qreject 187.7 kW
Evaporator specific mass mevap 2.72 kg/kW
Condenser/HX specific mass mcond 2.72 kg/kW
Compressor specific mass mcomp 0.202 kg/kW
Evaporator mass Mevap 272 kg
Condenser/HX mass Mcond 510.6 kg
Compressor mass Mcomp 17.7 kg
Heat pump mass MHp 800 kg

Power Supply
Specific mass mpower 30 kg/kW
Power penalty Mpower 2631 kg

Rejection Loop
Liquid pipe mass Mliquid 193.5 kg
Vapor pipe mass Mvapo r 104.8 kg
Pipe mass Mpipe 298 kg

Radiator

Rejection temperature Treject 362

Sink temperature Tsink 320
Fin efficiency rt 0.7
Emissivity _ 0,8
Radiator area A 884.2

Radiator specific mass mrad 2.5
Radiator mass Mrad 2211

K
K

m 2

kg/m 2
kg

System Mass MTCs 5940 kg
i
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optimal mass for this configuration, as stated earlier, is 5940 kg. In spite of the

additional mass, the decoupled system is the preferred configuration, for the reasons

cited in Section 2.3.2.
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CHAPTER 3. A THERMAL CONTROL SYSTEM BASED ON

AN ABSORPTION HEAT PUMP

The Rankine-cycle heat pump discussed in the previous section is an example of a

work-driven heat pump (WDHP). The energy needed to accomplish the temperature lift

is provided as shaft work, usually by an electrical motor driving a compressor. There

is a class of heat pumps that uses high-temperature heat instead of shaft work to

remove heat from a low-temperature source. These heat-driven heat pumps (HDHP)

can be attractive in a scenario where a high-temperature heat source is available (such

as process waste heat). Using this waste heat, the power penalty associated with the

shaft work can be reduced. In the case of a lunar base, high-temperature heat may be

available as a byproduct of a main electrical power unit, such as a nuclear reactor or a

solar dynamic power plant. A SP-100 type nuclear reactor operating a Brayton cycle

would provide, in addition to the electric power, waste heat in the megawatt range at

temperatures of 600 to 1000 K [18-20]. Even in a scenario where no such heat is

available, high-quality heat can be generated using solar collectors. The heat

generation of a solar collector varies with the intensity of solar radiation in the same

manner as the effective sink temperature of the lunar environment. Therefore, a HDHP

using solar collectors is self-adaptive in the sense that most energy is provided at peak

load.

The schematic for a HDHP is given in Figure 17(a). Heat supplied from the source

(Qsourceat Tsourc=) is used to lift a cooling load (Qcool at Tcool) up to a higher

Analogous to thetemperature (Treject), where all heat (Qsource + Qcoo=) is rejected.

WDHP, the coefficient of performance of a HDHP is given by

Figure

between Tsourceand TrejectI

COP- Qcool
Q$ourco "

17(b) shows how this heat pump can be divided into a heat engine, working

and driving a heat pump between Tcool and Treject2. This

-30-
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Figure 17. A heat-driven heat pump (HDHP).

model can be utilized to derive the maximum efficiency of a HDHP.

engine and the heat pump are Carnot cycles with

Tsourca - Trekmtl
_en_ne = Tsource

COPHp = T(;991
Treject2 - T¢ool

and therefore

Ideally, both the

COPI-oI-P - %ngine " COPHp " Ts°urce - Treiectl T_;991
Tsource Treject2 - Tcool "

This model indicates that heat could be rejected at two different temperatures. If the

heat pump is designed for a given rejection temperature, Treject2, and Teourceand Tcoo=

are fixed, there remains the choice of the source rejection temperature, TrejectI .
i

Choosing Treject1 lower than Treject2 would defeat the purpose of the heat pump, which

is to elevate the temperature of rejected low-quality heat. The formula given for

COPHDI.P indicates that when the restriction Treject1 > Treject2 is applied, Traject 1 -

Trej_:t2 yields the maximum performance. Therefore, the complete system operates with

a common rejection temperature, as shown in Figure 17(a). For non-ideal engines and

heat pumps, TrejectI = Trej_t2 still provides the best overall performance, given the

above restrictions. For this reason, one common rejection temperature will be assumed

in the following discussion.
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One example of a HDHP is the absorption heat pump (Figure 18). Heat rejection

and acquisition work similar to the Rankine cycle described in the previous chapter.

Between states 1 and 2, the refrigerant condenses and rejects heat. From state 2 to

state 3, it is throttled to lower pressure and then evapdrated (3-4). The important

difference from the Rankine cycle is the absence of a power-consuming compressor.

Instead, the refrigerant goes into solution with a carrier fluid in the absorber (4-5), is

pumped up to the high-pressure level (5-6), and is then separated from the carrier fluid

at the higher pressure by means of heat addition (6-1) in the generator. A relatively

weak solution is circulated back from the generator to the absorber (7-8). The power

needed to pump the liquid is negligible compared to the compressor work of the

Rankine cycle. The amount of heat spent to separate the solution in the generator is

considerable. Heat will be rejected from the condenser and from the absorber. Two

fluids circulate in the heat pump. One is the actual refrigerant; the other is a liquid

used to absorb the refrigerant. Common pairs of working fluids are lithium bromide-

water and ammonia-water. There are many other possible pairs of working fluids, but

they are still in the research stages. In the following, both ammonia-water and lithium

bromide-water systems will be discussed.
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Figure 18. Schematic of an absorption heat pump.
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3.1 Ammonia-Water Heat Pump

Even the simplest setup of an ammonia-water heat pump is more complex than the

basic absorption pump presented in Figure 18. The additional complexity is due to the

separation of ammonia and water." If an ammonia-water solution is heated to the two-

phase region, the resulting vapor mixture generally contains water in addition to

ammonia. Even small fractions of water in the vapor can have a considerable effect on

the condenser and evaporator temperatures. As little as 0.5 mass percent water can

cause a 10 K drop in the condenser temperature. Dephlegmators are used to rid the

vapor mixture of water. The incoming vapor mixture is cooled with a cooling coil.

The condensate contains more water than the original vapor mixture, and the remaining

vapor contains a higher percentage of ammonia.

Figure 19 depicts a simple ammonia-water heat pump (thermodynamic states are

denoted by numbers and the heat loads by capital letters). It will become apparent in

the following discussion why a three-stage dephlegmator is used.

An enthalpy-concentration diagram of the thermodynamic processes is given in

Figure 20. The dashed lines denote the two-phase region at the low-pressure level,

and the dash-dotted lines denote the high-pressure saturation lines. Constant-

temperature levels at the high-pressure level are denoted by dotted lines. The solid

lines mark a thermodynamic process corresponding to the setup shown in Figure 19.

The two-component, two-phase mixture has both components (water and ammonia) in

both the liquid and the vapor phases. The state point of the mixture is represented on

the diagram by n. The states of the vapor and the liquid phases are denoted by

subscripts 0Oand 1, respectively. For example, for state 7, the concentration of the

liquid mixture is obtained by the intersection of the isotherms with the saturated liquid

line (7l), and the concentration of the gaseous mixture is given by 70o (the intersection

of the isotherm with the saturated vapor line). Physically, the isotherms do not end at

the saturation line; they are truncated here for clarity.

w
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The fluid circulating through the condenser and the evaporator can be

approximated as pure ammonia. In reality, it is impossible to achieve total separation,

but with proper design, the vapor quality can be high enough (z 99.9 mass percent) to

justify this approximation. System requirements dictate the cooling and rejection

temperatures, which in turn define their respective saturated pressure levels, _ow and

Phigt_. Thus, states 1 to 4 are defined.

At state 5, the strong solution leaving the absorber has to be all liquid in order to

avoid cavitation in the pump. This implies that state 5 has to be at or below the

saturated liquid line for _ow in the h-_ diagram (Figure 20). State 5 also defines the

rejection temperature of the absorber. The mixture in the absorber has to be cooled

down to state 5. This temperature would optimally be equal to the condenser

temperature. Therefore, state 5 is located at the intersection of the isothermal line at

condenser temperature and the saturated or subcooled liquid curve at Plow. In Figure

20, state 5 is at the saturated liquid curve. [The liquid in state 5 at the subcooled state

is shown in Figure 21(a)]. If t-,5 were chosen to be lower than shown in Figure 20, the

absorber rejection temperature would be higher, but the separation of ammonia and

water would require more energy and equipment. If _ were higher, the absorber's

rejection temperature would be lower than the condenser's, thus reducing the overall

system performance. The enthalpy change over the pump is negligible. Therefore,

state 5 is almost identical to state 6 in the h-_ diagram (Figure 20). The strong solution

is in a subcooled state at Phigh. " "

State 7 has to be at the same concentration as states 5 and 6 and within the high-

pressure two-phase region. The position of state 7 in the two-phase region is

proportional to the heat added to the mixture in the generator. The choice of the

amount of heat to be added to the mixture is illustrated in Figure 21(b). If heat were

added until the mixture is at state 7', then the concentration of the vapor mixture would

be 7'g. The purity of the ammonia would be very low for a practical system. If the
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heat added in the generator caused the mixture to be at state 7", then vapor with

higher ammonia concentration (7",_) would be produced, but the mass rate of vapor

production would be small due to the small amount of heat added. The operating

value of state 7 has to be in between 7' and 7". To determine the optimal amount of

heat to be added in the generator, and therefore the optimal state 7, would require an

elaborate multiple-parameter nonlinear optimization, which is beyond the scope of this

investigation.

The liquid left in the generator is throttled to Plow (state 8)and returned to the

absorber. In the first dephlegmator stage, the vapor is cooled from state 7g to 9 using

cooling coils. The selection of state 9 follows an argument presented for state 7

(generator), as can be seen in Figure 21(c).

A thermodynamic analysis indicated that three dephlegmator stages are necessary

in order to obtain a 99.9 percent ammonia concentration in the vapor mixture. The

dephlegmator stages 2 and 3 work analogous to stage 1. The liquids at states 8, 10,

12, and 14 and the vapor at state 4 are fed back into the absorber. Tables 8 and 9

show a practical example for this cycle. The property values were obtained from the

ASHRAE handbook [21]. The data are for 1 Ib/s of ammonia flow in the evaporator
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Thermodynamic states in an ammonia-water absorption cycle.

zi - -;

! EJ
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Statea

1

2

3

4

5

6

7

7l

8

7&

9

91

10

9g

11

11/

12

11&

13

13/

14

T h p ,_ m
Description (F) (Btu/Ib) (psi) (%) (Ib/s)

Condenser input 160 555 500 99.9 1.000

Condenser output 160 155 500 99.9 1.000

Evaporator input 20 155 50 99.9 1.000

Absorber input 20 540 50 99.9 1.000

Strong solution out 160 55 50 25.0 29.594

Strong solution in 160 55 500 25.0 29.594

Two phase in generator 380 440 500 25.0 29.594

Weak solution out 380 325 500 17.0 23.819

Weak solution in 380 325 50 17.0 23.819

Input dephlegmator stage 1 380 880 500 58.0 5.774

Two phase in dephlegmator stage 1 260 255 500 58.0 5.774

Output solution dephlegmator stage 1 260 145 500 47.0 4.504

Throttled solution dephlegmator stage 1 260 145 50 47.0 4.504
L

Out dephlegmator stage 1, in stage 2 260 630 500 97.0 1.270

Two phase in dephlegmator stage 2 180 495 500 97.0 1.270

Output solution dephlegmator stage 2 180 120 500 82.0 0.181

Throttled solution dephlegmator stage 2 180 120 50 82.0 0.181

Out dephlegmator stage 2, in stage 3 180 570 500 99.5 1.089

Two phase in dephlegmator stage 3 163 295 50 99.5 1.089

Output solution dephlegmator stage 3 163 140 500 95.0 0.089

Throttled solution dephlegmator stage 3 163 140 50 95.0 0.089

i

aThe state point numbers correspond to those given in Figure 20,
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Heat loads of the components of an ammonia-
water absorption cycle.

A

B

C

D

E

F

G

Q

Description (Btu/Ib)

Cooling load 385

Absorber rejection load 7341

Generator load 11195

Dephlegmator stage 1 rejection 3628

Dephlegmator stage 2 rejection 158

Dephlegmator stage 3 rejection 53

Condenser rejection 400

Tiow Thigh
(F) (F)

20 20

160 380

160 380

260 380

180 260

163 180

160 160

and condenser (they are in British units, as in the handbook).

COP = qcool - 0.0344 .
qg_-_'ator

Even with an optimization of the

improvements do not seem feasible.

The overall efficiency is

positions of states 7, 9, 11, and 13, major

There is, however, a potential for slight improvement by reusing heat within the

heat pump, i.e., using recovery heat exchangers to reuse the heat. Waste heat can be

recovered gainfully when it is available at a high temperature. However, when a small

amount of heat is involved, such as from the stage 3 dephlegmator, the associated mass

penalty of the recovery heat exchangers makes its reuse worthless. Therefore, a new,

improved heat pump (Figure 22) was considered. In order to reduce the rejection load

of the absorber, the fluid leaving the pump is preheated by the fluid leaving the

generator. Thus, the fluid entering the absorber from the generator is noticeably

cooler. A second preheater uses the rejection load from the first dephlegmator stage.

The modified system was evaluated based on the results shown in Table 8. For an

ideal heat exchanger (Tea - T7_), 5835 Btu/s can be transferred in the first preh'eater
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Figure 22. Schematic of an ammonia-water absorption heat pump
with internal heat reuse.

and 1501 Btu/s in the second (here, Tab = Tgl ). The COP of this improved heat pump

increases to 0.0998. Due to the very low COP of the ammonia-water absorption heat

pump, a mass analysis has not been performed for the system.

3.2 Lithium Bromide-Water Heat Pump

A common absorption system for terrestrial applications uses a lithium bromide and

water mixture. Similar to the ammonia-water system, the compressor work of the

Rankine cycle is replaced by heat-operated pressurization processes. The lithium

bromide-water system is popular because of the relative ease with which the

refrigerating fluid (water) can be separated in pure form from the carrier fluid (lithium

bromide). The basic principle of operation of the cycle is similar to that of the

ammonia-water system described earlier. A brief description of the components and

processes follows.

Figure 23 depicts a schematic of a lithium bromide-water absorption heat pump.

Here, superheated steam at high pressure (state 1) leaves the generator and condenses
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Figure 23. Schematic of a simple lithium bromide-water absorption heat pump.

to saturated liquid in the condenser (state 2). The liquid is subcooled in the precooler

(state 3) and expands in the valve to form a low-pressure liquid-vapor mixture (state 4).

This mixture absorbs the heat to be removed and forms saturated vapor at low pressure

in the evaporator (state 5). The vapor absorbs heat in the precooler to form

supersaturated vapor (state 6) and then enters the absorber.

In the absorber, the supersaturated steam mixes with the high-concentration

(strong) lithium bromide-water solution (state 12). The concentration of the solution is

changed to state 7. The heat of condensation and heat of solution are removed from

the absorber using cooling coils. The low-pressure solution is pumped to higher

pressure, and the subcooled solution absorbs heat in a recovery heat exchanger. The

weak solution enters the generator, where heat is added in order to separate pure

steam from the solution. The strong solution (state 10) rejects heat in the heat

exchanger, expands to low pressure in a valve, and re-enters the absorber, thus

completing the cycle.
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In the cycle just described, the cooling-load heat is absorbed by the evaporator,

and is raised to a higher temperature and rejected by the condenser. In order to

achieve this end, high-temperature heat is supplied to the generator. In addition, the

cycle mandates that the heats of condensation and solution be rejected from the

absorber. A detailed cycle analysis follows.

The system depicted in Figure 23 can be completely defined thermodynamically if

the following parameters are specified: (1) Q¢ool, the cooling load; (2) Tcool, the

acquisition temperature of the cooling load; (3) Tg_, the generator operating

temperature; (4) _$trong, the concentration of the strong solution; and (5) _weak, the

concentration of the weak solution. In other words, for a given capacity (Q¢ool), the

designer of the system has four degrees of freedom. In the case of a TCS for the lunar

base, as with most TCS applications, Tcool is specified based on the application--270 K

for lunar base needs and 280 K due to working fluid restrictions for this system. For

the LiBr-water system, the initiation of crystallization sets an upper bound on '_strong.

Hence, the degrees of freedom are reduced to two, vJz., _weak and Tgee. It would be a

straightforward process to generate the COP of the system as a function of these two

parameters. However, from a TCS design perspective, it is desirable to obtain COP as

a function of the rejection temperature, Thig h. The following procedure is adapted in

order to attain this relationship.

Figure 24 shows the variation of COP with _weak, the weak solution concentration,

for generator temperatures of 500, 600, and 700 K.

concentration, the better the COP of the system.

desirable to

permissible.

and 700 K is

correspondence

demonstrated in

It can be seen that the weaker the

Hence, for better performance, it is

operate the cycle with the weak solution concentration as low as

The variation of Thigh with _weak for generator temperatures of 500, 600,

shown in Figure 25. It can be seen that there is a one-to-one

between _weak and Thig h in the region of _weak < 60°/°" As

Figure 24, it is preferable to maintain _weak as lOW as practical.

Hence, in the region of interest, we express _weak as a function of Thig h for a given

Tcool and Tgen. In other words, COP can be specified in terms of Thigh end Tg_.

F
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Figure 24. Variation of COP With _weak (Tg_ - .500, 600, and 700 K).
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Figure 25. Variation of Thigh with _weak (Tgen = 500, 600, and 700 K).
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Figure 26 is a plot of the COP as a function of T_ for Thigh ,= 360-400 K (Tcool -

280 K). It can be seen that, for any given Thigh, there is a distinct maximum for the

COP. In this analysis, we have assumed that the Tgen value corresponding to this

maxima is a feasible value for the cycle. It is simple to verify this assumption, once

the cycle analysis is completed using the value. If we pick these maximum values for

Tgon from Figure 26, then the COP can be computed as a function of Thigh alone.

Using the technique described above, the COP values are computed for a few rejection

temperatures in the range of 360 to 400 K. It is found that a linear fit can be obtained

for the computed values, as shown in Figure 27. The cycle analysis and mass

estimates are now performed with the radiator temperature (Thigh) as the free variable.

The COP values used for the mass analysis are obtained from Figure 27.

In the analysis, a common rejection temperature has been assumed for the

absorber and condenser. The validity of this assumption has been discussed in an

earlier section. It should also be noted that, since water is used as the coolant in the

system, it is not possible to operate this TCS with a Tcoot of 270 K. Tcool - 280 K has

been assumed for this analysis. This increased acquisition temperature may be

unacceptable for some sensor cooling needs in the base. Similar to Case B for the

Rankine.-cycle TCS, the condenser is decoupled from the rejection loop. Such a

decoupling would allow the designer to operate multiple heat pumps (with potentially

different values for Tcoo_) and connect them to a common rejection loop. From both

control and safety perspectives, a decoupled system is better. It is also possible to

use a better working fluid, ammonia, for the rejection loop with the decoupling.

The specific masses of the various absorption cycle components are not readily

available. However, the major components of the heat pump (evaporator, condenser,

absorber, generator, precooler, and recuperator) can all be approximated as heat

exchangers and their masses estimated based on the rate of heat transfer occurring

inside them. Such an approximation, though simplistic, would provide a mass estimate
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that would benefit this cycle, since it would underpredict the mass of the components.

Hence, it could be called an optimistic mass estimate.

At this juncture, the heat loads to all the components need to be estimated in order

to predict the mass of the heat pump. Table 10 provides a complete cycle analysis for

Thigh - 360, 380, and 400 K. This analysis provides the heat loads to all the heat pump

components. The mass of the components can be computed by multiplying the heat

loads by the specific mass of" the heat exchangers (2.72 kg/kW in this case).

Intermediate values can be computed numerically in exactly the same manner. Rather

than computing the heat loads at every rejection temperature by means of the laborious

cycle analysis, a simpler scheme was devised using the following arguments. From

Table 10, it can be seen that the heat input to the generator and evaporator equals the

heat rejected at the condenser and absorber. This can also be seen easily from Figure

23, by performing an energy balance for the system. Hence,

Qevap + Qgen " Qcond + Qaba •

Equivalently,

Qevap + Qgen + Qcond + Qabs " 2(Qevap + Qgen) " 2Qcoot[1
L

U

The amount of heat recovery that occurs in the recuperator and precooler can be

determined by performing a cycle analysis as shown in Table 10. The sum of the heat

loads in the recuperator and precooler will be termed the internal heat load, Qint. The

internal heat loads at Thigh of 360, 380, and 400 K are listed, along with Qgen, in Table

11. An effort was made to see if a simple proportionality constant existed between

Qgen and Qint, i.e., Qint " k • Qgen. The values of k are also listed in Table 11. It can

be seen that no simple constant can be used for the range of interest. It was found,

however, that the value of k did not change appreciably for small variations in Thigh.

Hence, the approach used to calculate Qint was to determine k for a narrow range of
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Internal heat loads in a LiBr-water system.

Qcool

[kW]

100

Qint a

[kW]

124

Qgen

[kW]

149 0.832

380 100 210 164 1.280

400 100 383 187 2.048

aQint " Qrec + Qpre"

Thigh and use that value. The total heat loads are therefore given by

Qtotal " Qevap + Qg_n + Ocond + Qabs + Qint

=2Qcoo,[1 + C-_]+k'Qgen

I2 2+kl"Q¢o04 +

where k is determined for a narrow range of Thigh. For example, at "Thigh - 400 K, k =

2 and Qtotal " Qcoo=(2 + 4/COP). The simplified mass of the heat pump is determined

as

MHp = (2.72 kg/kW) • Qtotal •

3.2.1 Transport Loop from Source to Heat Pump

The transport loop connects the high-temperature heat source (such as waste heat

from a power plant) to the heat pump and differs from the rejection loop of the Rankine

cycle discussed previously in the following aspects:

1. Waste heat may be available at a temperature higher than the generator

operating temperature. The loop need not be close to isothermal, therefore,

and superheating and subcooling of the transport fluid may be permitted,

instead.

f
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2. The transport loop will operate at much higher temperatures than typical

rejection loops. Since ammonia is not suited for temperatures that will be in

the range of 500 to 1000 K, water, which has a high enough critical

temperature, has no toxicityl ancl has a large latent heat capacity, can be

substituted for the ammonia.

In the mass estimate, the mass of the tubes, the fluids in the tubes, a pump, and the

power penalty associated with the pump are included. The operating conditions are

defined by the waste heat source temperature, the generator temperature, and the

pressure in the loop. The saturation pressure of the transport fluid at generator

temperature provides the largest enthalpy difference for given supply and return

temperatures. This yields the lowest mass flow rate and also the lowest overall mass.

It is possible to pressurize the loop even higher in order to reduce the density of the

steam in the supply line and therefore the size of the tubing, but the decrease in

available enthalpy difference, as well as increased tube thickness, increases overall

mass. The length of the piping, which is the distance between the waste heat source

and the heat pump, is assumed to be 500 m. This distance is chosen for safety

considerations, as the source will most likely be a nuclear reactor. The tube diameter

is optimized with respect to overall mass. If the tubes are too small, the pump mass

will become too large. If they are too large, the pipes will be too heavy. In all cases,

the overall pressure drop in the piping is restricted to a maximum of 10 percent. Table

12 gives an example of a piping layout. The model shows low sensitivity to the

available source temperature and operating pressure, as long as the pressure is above

saturation pressure at generator temperature. The mass model can be linearized for

use in the overall TCS optimization:

Ms.;oop- 2.9 kg/kW • Qsource •
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Table 12. Piping data for the rejection and heat source transport loops.

Loop rejection heat source

Refrigerant R717 R718

Heat load (kW) 490 390

Length, one way (m) 556 500

Pressure (MPa) 6.61 9.5

hg - ht (kJ/kg) 697.5 2370.4

Mass flow rate (kg/s) 0.70 0.165

State of fluid liquid gas liquid gas

Temperature (K) 376 376 570 900

Vicosity (kg/ms) 0.645e-4 0.131 e-4 0.910e-4 0.336e-4

Density (kg/m 3) 448.8 59.4 721.7 23.82

Volume flow rate (m3/s) 1.565e-3 1.183e-2 2.280e-4 6.908e-3

Reynolds number 345000 1011000 119000 130000

Inner diameter (ram) 40 68 19.4 48.0

Velocity (m/s) 1.23 3.28 0.78 3.83

Friction factor 0.0141 0.0116 0.0174 0.0170

Pressure drop (MPa) 0.665 0.304 0.94 0.31

Wall thickness (mm) 1.66 2.80 1.15 2.84

Mass tubes (kg) 326 928 97.8 599.5

Mass fluid (kg) 317 119 106.1 21.5

Pump mass (kg) 29 19

Power penalty (kg) 432 258

Overall mall (kg) 2282 1130

Specific mass (kg/kW) 4.66 2.90

|
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The proportionality constant is obtained using reference conditions close to

optimum for the overall TCS mass (Qsource" 190 kW, Tsource = 700 K, Tgen - 641 K,

P - 9.5 MPa).

3.2.2 Rejection Loop

The mass model for the rejection loop has been discussed in detail for the

Rankine-cycle heat pump decoupled from the radiators. It has been linearized for

use in the overall TCS mass optimization. In order to minimize the error

committed with this linearization, the conditions for the reference computation are

iteratively adjusted to the minimum overall TCS mass conditions. This guarantees

that the most important result of the optimization, which is the minimum overall

mass, is consistent with results for the Rankine--cycle TCS. The mass of the

rejection loop is

Mr.loop - 4.66 kg/kW • Qreject •

A sensitivity analysis showed that the variation in specific mass is minimal with

modest variation in optimal working conditions. Table 12 presents data for the

piping at the mass optimal reference condition.

3.2.3 Radiators

The mass model for the radiator was discussed in detail in a previous

section. The parameters for the model are the same as for the Rankine TCS and

are summarized in Table 13. The mass of the radiator rejecting Qsource at Tsource

would be a part of the power supply radiator under normal circumstances. When a

TCS utilizes this heat, as in the case of the HDHP, the mass of the power supply

radiator is reduced by a quantity proportional to Qsource. This is accounted for in

the TCS optimization for the HDHP.
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Table 13. Radiator parameters.

Sink temperature Tsink = 320 K

Emissivity _ = 0.8

Fin efficiency T/- 0.7

Specific radiator mass mrad = 2.5 kg/m 2

The variation of TCS mass with the radiator temperature is plotted in Figure 28. It

is noted that the minimum TCS mass of about 6000 kg is at 396 K. The component

masses for this optimal case are listed in Table 14. It must be recalled that the

following assumptions were made in the mass calculations: (1) The actual hardware for

the heat pump was approximated as heat exchangers, thus underestimating the mass of

the components. (2) In addition, it has been assumed that no pressure drops occur in

the components of the heat pump. This, again, causes an underestimation of the mass

of the heat pump. (3) The use of water as the refrigerant restricted Tcool to 280 K, and

the mass analysis was performed using this value rather than Tcoo4 = 270 K as for the

Rankine cycle. (4) No mass penalty has been assigned for the heat source. For these

reasons, it is concluded that the Rankine cycle described in Chapter 2 would be a

more optimal cycle than the absorption cycles described here.

•',
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Table 14. Optimum component and TCS masses for a
LiBr-wate r absorption heat pump.

Acquisition Loop
Cooling load Qcooa 100 kW
Cooling temperature Tcool 280 K

Heat Pump

Output temperature Thig h 401 K
Heat pump efficiency COP 0.535
Heat source Qg_ 186.87 kW
Rejection load Qrej=ct 286.87 kW
Heat pump mass MHp 2577 kg

Heat Source
Source temperature
Source load

Source loop specific mass
Source loop mass

T_urco 700 K
Qg=n 186.87 kW
ms.loop 2.9 kg/kW
Ms.loop 542 kg

Rejection Loop

Rejection load Qreject
Rejection loop specific mass mr,loop
Rejection loop mass Mr.loop

286.87 kW

4.66 kg/kW
1337 kg/kW

Radiator

Rejection temperature Treject 401 K
Sink temperature Tsink 320 K
Fin efficiency _ 0.7
Emissivity _ 0.8
Radiator area A 640.5 m2

Radiator specific mass mrsd 2.5 kg/m 2
Radiator mass M'rad 1601.25 kg
Power radiator mass savings Mrs d_ 64.13 kg
Net radiator mass (M'rad-Mrad_) Mrsd 1537 kg

System Mass MTCs 5993 kg

=_iU
w
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Figure 28. Variation of TCS mass with radiator temperature.
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